The generator matrix

 1  0  1  1  1 3X+2  1  1 3X+2  1  2  1  1  1 X+2  1  1 X+2  1  1  0  1  1 2X+2  1  1 3X  1  1  X  1  2  1 3X  1 2X+2  1  1 2X  1  1  1 2X  1  X  1  1  1  1  1  1  X  0  1  1  2  1  1  1  1  1  0  1  X 3X+2 2X  2  1 3X+2  1 2X+2 2X+2  1  1  X  1  1  1  1  1  1  1  1  1  1 3X  1  X  2 3X+2  0  0  1 X+2  1  1 2X  1  1
 0  1  1  2 X+1  1  X X+3  1  X  1 3X+3 3X+3  0  1 2X+3 2X+2  1  3 3X  1 3X 3X+3  1  3 X+2  1  0 X+1  1 X+1  1 X+2  1 3X+1  1 X+2 2X+3  1  1 2X  1  1 2X  1 X+2 2X+1 2X  2  2  2  2  1 X+2 2X+2  X 2X+3 2X  1  X X+2 2X  2  1  1  1  1 3X  1  2  1  1  X 3X+2  0 3X  2 3X  0 X+1 3X+3 3X+3 3X+1 2X+3 2X+3  1 X+1  1  1  1  1  1  0  1 3X 3X+2  1 X+1  0
 0  0  X 3X 2X 3X 3X  X 2X+2  2 3X 2X+2 3X+2 2X+2  0  2 X+2 X+2 X+2 3X+2 2X+2 2X  0 3X+2  0 2X 3X+2 3X+2 X+2 2X+2 2X+2 2X+2 2X+2 3X  X 2X 3X+2 3X 3X  2  0 2X X+2  X 2X 3X X+2  2  2 2X  0 3X+2 3X+2  X 2X+2  X 2X 3X 3X+2 X+2  0  X 3X+2  0 3X+2  X X+2 2X+2  X  X  0  2  0 X+2 2X  2 X+2  X X+2 3X+2 2X 3X  2 2X+2  X  0 3X  2  X  2 3X  2 3X 3X+2 X+2  0 3X+2 2X 2X

generates a code of length 99 over Z4[X]/(X^2+2) who�s minimum homogenous weight is 95.

Homogenous weight enumerator: w(x)=1x^0+32x^95+380x^96+298x^97+347x^98+176x^99+313x^100+104x^101+183x^102+60x^103+61x^104+30x^105+52x^106+4x^107+4x^108+1x^116+1x^126+1x^138

The gray image is a code over GF(2) with n=792, k=11 and d=380.
This code was found by Heurico 1.16 in 0.828 seconds.